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A time-optimal control that steers the phase point for a third-order linear system to the origin is constructed in an explicit analytical 
form. It is assumed that the characteristic exponents are zero, and the constraints on the control function are non-symmetric. 
The system simulates the dynamics of a point mass driven by a force whose rate of change can be regulated. An optimal control 
is constructed both in the feedback and open-loop forms. In the latter case, the optimal control is a function of time. Relations 
are derived for the switching curve and surface and for the time intervals of the motion; optimal phase trajectories are constructed; 
the feedback control portrait is investigated. The influence of a parameter characterizing the degree of asymmetry of the constraints 
is studied. “Near-optimal” control modes, which are much simpler to implement, are constructed. 0 2000 Elsevier Science Ltd. 
All rights reserved. 

1. FORMULATION OF THE PROBLEM 

We consider a time-optimal control problem [l] for a third-order controlled system. 

. . . 
x =u; x(0) = x0, i(O) = iO, f(0) = 2O 
X(Q) = i(I,) = $t,) = 0 

(1.1) 

ff + mq,, 
+ u-Cu<u, u-co, u+>o 

It is required to find an optimal control u in the form of a programme U* = up(t x0 i”,i9 and a synthesis 
u * = us, f, _Y), as well as the optimal response time of the motion rf* = T(x”, i”,i$, the switching times 
of the control, which is of the bang-bang type, the Bellman function T(x, x, x) of problem (1.1) and 
optimal trajectorie.sx = x*(t,x’, ioo, i ), i = i*(t,x’, i’,,?‘), i = _?*(t,x’, i’,_Y’); in other words, the problem 
is to construct an optimal feedback control portrait [l]. No complete solution of this problem is known 
in scientific literature. It is of certain methodological and applied interest. 

We note that at an early stage, when the mathematical technique of the maximum principle was first 
established, schemes for constructing the switching surface, based on Fel’dbaum’s theorem, were 
developed ([2, 31, etc.), and equations to determine the time intervals and simplified relations 
were presented [3]. Problem (1.1) has been investigated [4] for the case of symmetrical constraints 
(-U- = u+) when no terminal condition is imposed on the quantity $tf>. Krasovskii’s methods of the 
moment problem [5] have been used to analyse the case of an equation of arbitrary order CC@) = u, 
lul < 1,whenn = 1, 2,3, . . . . with conditions of type (1.1) x(fr> = i(rf) = . . . x(*-‘)(tf) = 0. General 
relations have been derived for the minimum time and for the singular sets (switching curves, surfaces 
and hypersurfaces of the control), in particular, for n = 3, but the feedback control portrait has not 
been investigated. 

A solution of the control problem (1.1) exists for arbitrary values of x0, i”, i’ (see Section 4). A time- 
optimal control sa.tisfies necessary and sufficient conditions in the form of the maximum principle [l]. 
For greater convenience in applications, we will represent the third-order equation (1.1) in the form 
of the system. 

b+=a+u, ti =w, i=v; w(O)=wO, u(O)=vO, x(0)=x0 
w(t,)=v(t,)=x(t,)=O; r, +mint,. IulCl 

a=(u-+u+)/(u+-uU-), lalcl (2YI(u+-u-)+3 

(1.2) 
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Proceeding in the standard way, we introduce variables r, q,p adjoint to w, ~, x and define the form 
of the optimal control on the basis of the maximum condition for the Hamiltonian H 

u*=signr ,  r=r °-q°t+p°t212 

t ~> 0, r 0, q0, p0 = const (1.3) 

H* = H I , =lrl+ra+qw+ pu ~ COnSt ~ 0 
U----I~ 

/~=0, q = - p ,  r=-q  

It follows from (1.3) that the optimal control u* is of the bang-bang type and may have two, one or 
no switching points (Fel'dbaum's theorem [1]), depending on the values of w °, v0, x o. The unknown 
constants rE qO, p0 and the optimal time t/are determined by three boundary conditions and one 
normalization condition as a function of the initial (measured) data (w °, ~0, x0). This approach, however, 
is extremely cumbersome and difficult to implement. 

By analogy with the two-dimensional feedback control portrait for the equation £ = a + u [1], we 
will construct sets in the phase space (w, ~, x) corresponding to the number of switching points. According 
to the maximum principle, this space is divided by the switching surface into two parts. On the surface 
there is a switching curve with the property that if the phase point moves along that curve, it will reach 
the origin without switchings. We will find analytical expressions describing the different parts of the 
motion and the sets just described. Introduction of a Cartesian system of coordinates WVX yields a 
readily visualized geometrical representation of the constructions (see Fig. 1). We will refer to the WV 
plane as horizontal. 

At the first stage 0 ~< t ~< O the point Q = (w, ag, x) moves from an arbitrary initial state 
Q0 = (w 0, v0, x 0) (1.2), with the corresponding value of u = __+ 1, until it reaches the surface P, on which 
the control is switched. Thus we have the following expressions when t = O 

w°+~l  = w  I, u ° + w ° O + ~ 2 = v  I 

x°+v°O+w°O2/2+X3 =xt ,  Xk =(a+u) Oklk!, k=1,2 ,3  (1.4) 

0>~0, Q°=,,v°,v°,x°)ER, Ql =(wl,ul,xt)~P 

After the control changes sign, u ~ - u ,  the phase point moves along the surface P from state 
Q~ --- (wl, Ul, Xl) until it intersects the switching curve L, which divides the surface P into two parts. At 
the second step, 0 ~< t ~< O + x, the phase portrait is two-dimensional (similar to that of the classical 
case [1]); finally, we obtain expressions of the same type as (1.4) when t = O + x 

, _ i . , ~ ~ , _  z (b) 

W \ ~ Z  V 

Fig. 1. 
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Wl + X I = W 2 ,  Vl +WI 'C+X2=V2 

xl + vlx + wlx212 + X3 = x2 (1.5) 

Z t = ( a - u ) x i ,  k = 1 , 2 , 3 ;  X>~0, Q2=(w2, v2, x 2 ) ~ L  

The control changes sign again on the switching curve L, and the phase point Q moves along the 
curve from state Q2 to the origin Qf = (0, 0, 0) in the time 0 ~> 0; when t = tf = 0 + x + 0 we have the 
following relations 

w2 + Xl =0,  v2 + w20+ X2=0 (1.6) 

X 2 +!12 0 + W202 / 2 + Z3 = O, 

Xk=(a+u)Ot lk ! ,  k=1,2,3; 0~>0 

Relations (1.4)--(1.6) are parametric equations of the switching surface P and switching curve L of 
the bang-bang control; they also define the intervals of the motion O, x, 0 and the optimal time 
tf = 0 + x + 0 as functions of an arbitrary initial point Q0. In addition, the conditions O, x, 0 ~> 0 uniquely 
define the optimal control both at the beginning and throughout the entire process of the controlled 
motion. 

Thus, it is required to solve the equations for the unknown characteristics, to investigate their 
properties and to construct a portrait of the time-optimal motion of the phase point Q from the position 

0 0 Q to the terminal state Qf. If the point Q is fixed, relations (1.4)-(1.6) define an optimal open-loop 
control: the switching times and the initial value of u = --- 1. 

2. C O N S T R U C T I O N  OF T H E  O P T I M A L  F E E D B A C K  C O N T R O L  

We will first use re](ations (1.4)-(1.6) to determine the portrait of the time-optimal motion in the entire 
phase space: Q0 _~ Q ~ R. To that end, we construct the switching curve L and the switching surface 
P of the bang-bang control. 

2.1. The switchh~g curve. The switching curve is parametrically defined (0 ~> 0 is the parameter) by 
Eqs (1.6); it consists of two optimal trajectories reaching the origin. We solve Eqs (1.6) for w2, ~2, x2; 
we obtain the desired expressions 

W = w 2 = - X r ,  V=o2=Z2,  X=x2=-X3 

Xk =(a+u)  Ok/k!, k=1,2,3 

u = u  2=+I,  0>~0, L=L+UL_ 

(2.1) 

It follows from (2.1) that if Q E L, that is, some 0 > 0 exists for which the vector equation Q = Q2(0) 
is satisfied, the optimal control is u 2 = -signw2 and motion occurs along the corresponding branch L_ 
of the curve L. The projections of the switching curve onto the WV and WX planes have the following 
form (see Figs 2 and 3, the dashed curves 1, 2 are for a = 0 and a = 1/2, respectively) 

V =~2W 2 = - ( l - a s i g n  W) -I I Wl W / 2  

X=~3W 3, ~t = ( a - s i g n w )  t-k/k!, k = 2 , 3  

(V=(912)~u2( l+au2)~X ~ ,  u 2 = - s i g n X  

(2.2) 

X = -(2 / 9) ~ u2 (! + au 2)-y2 I V I ~ ,  u 2 = sign V 

The curves V(W) and X(W) of (2.2) have horizontal tangents (the W axis is horizontal). 
It follows from ,(2.1) and (2.2), in particular, that u = u2 = + 1 forX, X, W ~ 0, that is, the control 

u is completely defined on the curve L. Note that if a = 0, the curves (2.2) are invariant under the 
substitution u --> --u, Q -~ - Q .  The curve L divides the surface P into two parts P± corresponding to 
u2 = _+I(L ~ P_+, P = P+ t3 P_ t3 L); see below. 
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Fig. 2. Fig. 3. 

2.2. The switching surface. The construction of the switching surface P is based on relationships (1.5) 
and (1.6), by analogy with (2.1) and (2.2). The parametric representation is 

W=wj=-Zi ,  V=vl =)~2, X=x  I=-X3 

)~k = a(0 + x) k - u I [(0 + x) k - 2x k ] / k!, k = 1, 2, 3 (2.3) 

0, x ~> 0, u t = + l  

Taking into consideration that by (2.3) 0 and x are non-negative, we obtain the desired 
representations and the condition to be imposed on W and V 

0 = (1 + au t )-i [(I + au t )W 2 / 2 + u t (1 - a 2)V] ~ 

"~=ut(l+aUl)-tW+(i+aul)(I-aul)-JO, u! =-1-1 

ul(I - aZ)V +(I + au I )W 2/2~>0 

(2.4) 

Substitution of (2.4) into the third relation in (2.3), forX, yields an expression X(W, 1I, Ul) in which 
the function ul(Q1) is as yet undetermined. It follows from the necessary and sufficient optimality 
conditions of the maximum principle [1] that the inequality in (2.4) defines the domains of the values 
of IV, and Vfor which Ul = -+ 1, respectively 

uf = u~ = sign W (2.5) 

(1 - a2)Vsign W~>-(1 + asign W)W 2/2  

Thus, the explicit expression for the switching surface P becomes 

X = ulx 3/3 +(1 +au t )-2(W- 2utx) 3 /6  m X'(W, V,u I) 

x = (I -au|)-3(utW+[(I +aul)W 2/2  + ul(I -a2)V]~)  ~ "C(W,V, ul) (2.6) 

u j = + l ,  V , ~ - ( l + a s i g n W ) ( 1 - a ~ ) - t l W  I W / 2 = V * ( W )  

According to (2.5) and (2.6), the function X*(W, 11, ul) is smooth everywhere except for the set of 
the values of W and Vcorresponding to the change of sign of ul 

V = V*(W)=-(1 - a2)-I(1 +asign W)J W] W / 2  (2.7) 
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A direct check will show, after (2.7) is substituted into (2.6), that the curve along which the two smooth 
parts of the surface P join together is the switching curve L of (2.2). Indeed, we have 

I W, W ~ 0  
(l :I: i)W/2 + (! • a)x*(W, V * ( W ) , + _ i )  = (2.8) 

[0 ,  w ~ o  

X(W, V*(W), +1) = (1 T- a) -2 W 3 /6 

The system of equations (2.7) and (2.8) defines the switching curve L of (2.2). 
We have thus established that the switching surface is P = P+ tO L U P_, where the parts P± of the 

surface correspond to the values Ul = ± 1, respectively. The analytical expressions for P± have the form 

P,={W,V,X: X=X'(W,V,u~), u l = + l ,  V,~V'(W)} (2.9) 

As a result, we have constructed singular sets: the switching surface P and switching curve L C P of 
the bang-bang control u(Q). These sets also depend on the parameter a, lal < I. They are shown 
graphically in Figs 1-3; for clarity, we show the situation for a = 0 and a = 1/2, respectively. Figure 1 
is an isometric projection of the switching surface P and the switching curve L of the control. The 
orthogonal projections of the switching curves onto the WV and WX planes are shown in Figs 2 and 3 
(dashed curves 1 and 2) for a = 0 and a = 1/2, respectively. 

2.3. Synthesis of the time-optimal feedback control. The bang-bang control is constructed using 
expressions (2.1)-(12.6) and (2.9). In the regular case, where Q ~ P, the control u* is defined as follows: 

u*=u~(Q)=+l ,  x<> X(w,u) (QER±) 
(2.10) 

R± = Iw,v ,x : x<> X'(w,v ,ul)} 

The control u0(Q) (2.10) steers the phase point Q onto the switching surface P or, more precisely, 
onto one of its parts P±, on which the optimal control changes in sign (when there are no perturbations). 
The phase point Q = Q1 ~ P_+ then moves along the surface P and reaches the curve L: Q1 = Q2 ~t 
L±. After the control has changed sign, the point Q2 moves along the curve L± to the terminal point 
al. 

If the system is subject to uncontrolled perturbations, the synthesis of a time-optimal feedback control 
involves verification that the phase point belongs to the sets R±, P±, L±, that is 

at each instant of time. 

u*=us(Q)=+l, QeR±UP~Ui.~ (2.11) 

2.4. Construction of the optimal trajectory. Simulation of the motion of the unperturbed system (1.2), 
which is optimally controlled according to the feedback law (2.11), reduces to elementary integration 
of the equations for the piecewise-constant values of the function u = us(Q). At the first step we 
have 

w(t) = w 0 + ~l ,  V (t)---vO + wOt + ~2, x(t)---x 0 +u Of + wOt 2 12 + ~3 

~tk=(a+u~(Q°))tklk!, k=1,2,3, O~>t~O 

where QO f~ p (the regular case) and the control u~(Q °) is chosen on the basis of (2.10) 

(2.12) 

u~ = - sign(x ° - X(w O,u o ul )) 

After the surface P has been reached at a certain time t 1 = ~ for which 

x('O) = X(w(O),u (O),uj) 

the control changes sign; note that when that happens Q(O) ~ L. The phase point moves on the part 
of the surface P+ or P_ in accordance with the formulae 
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w(t) = w I +~l ,  u(t)=u~ +wl( t -O)+)~2 

x(t) = x I +u i ( t -  O)+ wl(t - 0 )  2/2+)~ 3 

)Ok = (a - u~(Q°))(t- O) k Ik!, k = !,2,3 

By (2.13), at some time t = t 2 = ~ + x the phase point intersects the curve L, that is 

(2.13) 

u( t2)=-~2lw(t2) lw(t2) ,  w(t2)=w2, v(t2)=u 2 

x(t2 ) = Z3w3(t2) = x2 (2.14) 

)~ =(l-asignw(t2)) l -k  /k!, k = 2 , 3  

that is, Q(t2) = Q2 ~ L. Further motion of the point Q(t) for t2 < t <~ tf = t2 + 0 occurs, by analogy 
with (2.12) and (2.13), from the point Q2 (2.14) to the origin Q/under the control u = u ~(Q0). By (1.6), 
the terminal point Qf is reached after a time interval 0 = (1 - a signw2) -1 I w2 I. Note that if Q = Q1 

P_+, the time intervals ~, 0 are determined similarly, on the basis of the values wi, agl, using formulae 
(2.3)-(2.7); see below. 

Under real conditions, the system may experience perturbations, either constantly acting or impulsive 
with respect to w. This leads to singular control modes sliding along the surface P and curve L. The 
control u~Q) is chosen theoretically by (2.11) at each instant of time (in practice - fairly frequently, 
for example, at times separated by the basic time step of the integration or measurement process of 
the phase vector (Q). An example - computation of the optimal phase trajectory for a = 0 and a = 1/2 
(solid curves 1 and 2) -projected onto the WVand WXplanes, is shown in Figs 2 and 3 for initial values 
of the phase variables w ° = -2 ,  a) ° = 1.5, x ° = -1.5; the optimum response times are tf = 6.15 and 
t: = 3.92, respectively, see below. 

3. D E T E R M I N A T I O N  OF THE T I M E  C H A R A C T E R I S T I C S  OF THE 
M O T I O N  IN THE T I M E - O P T I M A L  P R O B L E M  

A synthesis of the feedback control was constructed in Section 2; it is based on measuring the phase 
vector and may be implemented without computing the relevant time intervals O, x 0 and the minimum 
value of tf = ~ + x + 0. However, effective determination of these quantities is extremely important 
from both the theoretical and applied viewpoints, e.g. in order to construct an open-loop control and 
optimal trajectories according to Section 2.4. This may be done using formulae (1.4)-(1.6). 

3.1. Determination of  the time intervals. Let us eliminate the unknowns Q1 and Qz from (1.4)-(1.6). 
We obtain an algebraic system for the required ~, x and 0 

A~=-~ j ,  Arl=)~2, t~=-)~3;  t s = O + x + O  

A~=(w° +L1)/u, ATl=(u°-~.z ) lu ,  A~=(x°  +7%)/u 
(3.1) 

u = u  0 (Q0)=_+l 

)C~=[ t} -2 (x+6)  k+2ok] /k ! ,  )~k=at~/k!,  k=1,2,3 

The value o fu  in (3.1) is chosen in accordance with (2.10) or (2.11). Solving the first two equations 
for x and a~ in terms of A~, A'q and the unknown tf, we obtain 

x, = (tI + A~)/2, 0 ,  = ( t / -  A~)/2 -O,  = q~o(tf)l'c, 

0, = dPo(t,)/x, (3.2) 

~0.0 = +(4Arl'Y- A~ z +2A~t /+t~)18 ,  0, +x, +0, -- tf 

Note that, by (3.1), the values of A( and Al1 in (3.2) depend on the unknown tf. Substituting the 
algebraic functions x, and ~, (or x, and 0,, 0, = tf - "c, - ~,) (3.2) into the relation for A~ (3.1) and 
multiplying by x, > 0 (in the regular case, where QO ~t L), we obtain a fourth-order equation for the 
unknown t# for example, in the form 
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F(t/, A;, Arl, A~) = A~X, + t3/X, / 6 - t}x2, + 2t l~ox,  + t /x ] - Oox2, 4 2 - X, / 3 - ~ 0  = 0 ( 3 . 3 )  

The functions x,, ~0, /~g (and ~o, A~, Arl) are determined by (3.1) and (3.2) as functions of the 
unknown t:, the given quantities w °, ~o, x o, and the parameter a. We have to determine the minimum 
root t7 of Eq. (3.3) which satisfies the conditions 

t*/= t/(Q°,a) > 0, x* = x(Q°,a) > 0 
(3.4) 

O* = O(Q°,a) > O, O* = O(Q°,a) > 0 

As in the case of,~ymmetrical constraints [3], it turns out that these conditions hold for the maximum 
root of Eq. (3.3). 

The desired root tTof (3.4) may be determined analytically using the Cardano formula or numerically 
0 + for fixed Q and a. It is fairly simple to estimate the minimum value t~ and maximum value t f  

(t~/> t7 > 0) of tf, in particular, using the "near-optimal" approach to the solution of the problem (see 
Section 4). 

Note that if Q0 ¢. p, all the above time intervals are strictly positive. If Q0 ~ p, but Q0 ~ L, then 
4% = 0, x,, 0. > 0. Finally, if Q0 ~ L, but Q0 ~ Qf, we have x. = 4% = 0, 0. > 0. 

For the figures specified above, the time intervals for a = 0 are as follows: tf = 6.15, 4% = 3.16, x* = 
2.08, 0* = 0.92; similarly, ifa = 1/2, the desired quantities are t~ = 3.92, ~,  = 1.61, x* = 1.94, 0* = 0.3. 

3.2. Construction of  the Bellman function. The optimal response time t~ for an arbitrary point Q E R 
- the Bellman function T(Q) of problem (1.2) - is determined as a positive piecewise-smooth solution 
of the Cauchy problem for the Hamilton-Jacobi-Bellman equation 

- I~TlOwl+aOTlOw+ wOTl~v +v OTIOx = -1 (3.5) 

u*=-OTlOwlOTl3wl  -I, T(Q)>0, T(QI)=O 

The relation between dynamic programming and the maximum principle was discussed in [1]. To solve 
the Cauchy problem (3.5), one has to construct the equations of characteristics and solve the two-point 
boundary-value problem of the maximum principle, in the form (1.2), (1.3). The corresponding 
expressions (3.2)-(3.4) for an arbitrary point Q0 determine the desired Bellman function T(Q) = t~ (Q), 
which depends on the three variables w, J, x and on the parameter a. It may be defined as a computational 
procedure or represented by sections t7 = const, that is, two-dimensional level surfaces in the three- 
dimensional space of the variables w, ~ and x for fixed a. 

4. " N E A R - O P T I M A L "  C O N T R O L  MODES 

Besides the optimal control modes just constructed, comparatively simple methods may be proposed 
that do not require very much more time. They are analogous to "coordinatewise descent," and their 
implementation does not require large computational resources. 

4.1. The simplest ,method of  control. This mode consists of three stages: (1) time-optimal steering to 
zero acceleration w; (2) time-optimal steering to zero velocity 49 and to acceleration w from the state 
w = 0; (3) time-optimal steering to zero value of the coordinate x, to velocity a) and to acceleration w 
from the state w = 0, ~ = 0. Thus, the phase point first moves in the VX plane, then along the X axis, 
finally reaching the terminal point Qf. The corresponding controls u(t) are constructed using piecewise- 
constant (bang-bang) functions, which become Walsh functions if a = 0 [7]. Figure 4 is a schematic 
representation of tile control process. 

Thus, at the first step we have the following expressions (in the regular case position, Q0 ~ L) 

0 < ~  t <~ tj = x w -'-I w ° I Id- (w)  °, d±(w) -  I :t:asignw 

u = uw(t) = -sign w°(h( t ) -  h ( t -  xw)) 

Q(t l )=Qu=(0,vl ,x l ) ,  vl = v ° + ( 1 - d ' ( w ° ) / 2 ) l w  ° l w  ° 

x I = x 0 +tt 0 1 w 0 1+(3 - d-(w°))w°3[6 

where h is the Heaviside step function. 

(4.1) 
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It follows from (4.1) that z.~ = ]w°[ for  a = 0 (symmetrical  constraints,  u -  = u+), since d ± = 1. In 
addition, the ratio kw = xw/Iw l is a mono tone  decreasing or increasing funct ion of  a as la l  ~ 1, and, 
moreover ,  k~ ~ 1/2 or k~ ~ ~o, since d -  ~ 2 or d -+ ---> 0. The  expressions for  ~1 and Xl in the special 
case of  symmetrical  constraints are obta ined from (4.1) by setting a = 0. 

By (4.1), the accelerat ion w is a l inear function of  t; the velocity ~ is described by a segment of  a 
parabola and the coordinatex by a segment of  a cubic parabola. The  quantities u 1 and xl may be arbitrary; 
compared  with l u°l and Ix°l, their  absolute values at the end of  the control  process may be increased 
or decreased  (see Fig. 4). It is obvious that the value of  Zw (4.1) is a lower bound t~ for the minimum 
time t f  (see Section 3.1). 

If  ~1 ¢ 0 (the second stage), the control  and the o ther  characteristics of  the process are defined by 
the relations. 

t I < t ~ t  2 = ' c w + ' c  v ,  "1: u =lu I I ~ ( V + v - I ) = 6 + < ~  

V = ( d + ( u l ) / d - ( u  I ))~,  Q(t2) = Q2 = (o,o, x2) 

- - - s i g n u l [ h ( t - t j ) - 2 h ( t - t  I - 6 )  + h(  t - tj - %  )] (4.2) 

x 2 = x t +u  j% - signu I [ d - ( u  I )(63 + 362cr - 36(r 2) - d+(u~ ) a  3 ] / 6 

It follows from the expressions for zv in (4.2) that % ~ oo as J a I ---> 1. Since v(a)  is a monotone  function, 
1/2 if l)1 is fixed and independent  of  a, we obtain a minimum xv = 2 l vl  I corresponding to a = 0, ~(0) = 

1, that  is 8 = o = [ a91 [ 1/2 for  a = 0. 
The  quantit ies xw, Vl and xl in (4.2) are defined in terms of  w °, u ° and x ° by (4.1). The  function uv( t )  

changes sign in the second interval when t = tl + 6, 6/o = u2, which guarantees  that the acceleration 
w will automatically vanish when t = t2. A suitable choice of  the sign of  the control  (-sign ~1) and the 
length of  the interval % will reduce the velocity ~ to zero at t = tz; the value of  x2 (4.2) can be arbitrary 
(see Fig. 4). 

We now consider the third, final stage of  the control,  complet ing the process whereby the phase point 
Q is brought  f rom the state Q2(0, 0, X2) to the origin Q(t3) = O f  = (0, 0, 0). If  x2 # 0, the bang-bang 
control  and the o ther  parameters  of  the mot ion  are defined by analogy with (4.1) and (4.2); the control  
has two switching points. We have the following governing relations 

t 2 < t ~  t 3 ='c  w + %  + x ~ ,  "cw = 2 ( y + × )  

= y d - ( x 2 ) l d + ( x 2 ) ,  y = (I x 2 I / 2 ) N ( d + ( x 2 ) ) g g - g ( x 2 )  

la = ( d - ( x 2 ) ( d + ( x 2 ) )  2 / 6 +  2(d-(x2))  3 + 3(d-(x2))  2 I d * ( x 2 ) )  (4.3) 

u = Ux(t)  = - sign x 2 ( h ( t  - t 2) - 2 h ( t  - t 2 - y )  + 2 h ( t  - t 2 - "c x 12  - ~ )  - h ( t  - t 2 - "c x ) )  

Q ( t 3 ) = Q f  = (0,0,0) 
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Note that the control ux(t) is symmetrical about the midpoint of the interval xx/2 = Y + •. In the case 

(see above, the second stage) and for fixed x2 independent of a, but the minimum is reached at a value 
a* = sign x2 (1 - ~J (4/3)), ]a*] = 1/6. In addition, relations (4.1)-(4.3) imply the following estimate 

t 3 =0(I w ° I+lu ° I ~j + I x  ° I ~)  

for asymptotically large values of 1] Q011. Note that the quantity t 3 of (4.3) defines an upper bound 
t~ for the unknown tf; see (3.2)-(3.4). 

Figure 4 presents time histories of the phase variables w, t~, x and a "near-optimal" control u for the 
same initial data as before (see Sections 2 and 3). The desired time t 3 turned out to be t 3 = 7,06 for 
a = 0 and t 3 = 5.07 for a = 1/2. Figures 5 and 6 show projections of the phase trajectories onto the 
WV and WX planes analogous to those presented in Figs 2 and 3; an analysis and comparison of these 
curves would definitely be interesting. 

4.2. Combined method of  control. Compared with the coordinatewise mode of control considered 
above, according to relations (4.1)-(4.3), which give a very rough lower bound t~ and upper bound t~ 
= t 3 for the minimum time t/, it is fairly simple to implement a two-stage process which yields a sharper 
estimate of tf: (1) time-optimal steering of the acceleration and velocity of the system to zero, (2) optimal 
steering to the terminal point Qy. Thus, the first stage combines two stages of the "coordinatewise 
descent" control mode considered above and is reduced to the known exact solution [8] for the classical 
problem [1]: 1) = u, u ~< u ~< u ÷. 

The control at the first stage contains one switching point, determined by the time t = ~ at which 
the switching curve intersects the WVplane. There are explicit expressions for the optimal control and 
time characteristics of the control process at the first stage 

0 < t ~ t l .  2 ='twu =(x+~, O<'Cwu(W°,V°)~t~ <~tf 

u,.o(t) = {-sign A, 0 < t ~< o~; sign A, o~ < t ~< xwu ] 

A = tP-V(w °) ~ O, V(w °) = - Iw°lw°/d-(w°)/2 (4.4) 

o~ = w°IA - + 13d+(A)Id-(A) 

= [oOd-(A)/A+ + wO2(l-a2)-1[2] I/2 

A ± = an(A) sign A 

- 2  -1  

V 
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It follows from (4.4) that for a = 0, we have d ~- = 1 and the expressions for U~, xwv, c~, [3 become the 
well-known expressions [1] for the case of symmetrical constraints. At the end of the first stage of the 
control, w(xw~) = u('c~) = 0, and the variable x(t) takes the value 

X(Xwv ) = x~v u = xa +va~+  wal] 2 /2  + A+~ 3/6 

w a = w ° - A - ~ ,  v a = v ° + w ° ~ - A - o ~ 2 1 2  

x a = x ° + v ° t x + w ° c t 2 / 2 - A - o ~ 3 / 6  

(4.5) 

where a9 a and wa are the values of the variables a9 and w at t = ct, that is, at the time the switching curve 
is reached according to (4.4), and xa = x(ct) is the corresponding value of the variable x. 

At the second stage, we have a time-optimal motion from the phase point Q ~  = (0, 0, X,,v) to the 
terminal point Qf as in the third stage considered above in (4.3), where x2 = xwv. The desired total time 
is t 3 = X~v + Xx, where Xx = 4([Xwvl/2) 1/3. There are estimates for the time t3(t 3 1> t~) in terms o fw °, ~0 

0 and x ,  analogous to those presented for the simple three-stage mode of control; this value may be used 
as an upper limit for t~ in (3.2)-(3.4). As indicated in Section 4.1, one can construct graphs like those 
shown in Fig. 4 for the trajectories and control and like those shown in Figs 5 and 6 for the projections 
of the phase trajectories. 

5. C O N C L U S I O N S  AND P O S S I B L E  G E N E R A L I Z A T I O N S  

Thus, Pontryagin's maximum principle and Fel'dbaum's theorem yield a highly efficient construction 
of a time-optimal feedback control as a synthesis for a third-order system. The feedback control problem 
has been successfully solved in an analytical form: the switching surface and curve are defined 
parametrically or explicitly. The choice of the sign of the bang-bang control reduces to verification of 
inequalities for relations defined by algebraic (power) functions. 

The construction of an open-loop control requires a computation of the time intervals during which 
the control has a fixed sign and the optimal time, given initial values of the acceleration, velocity and 
coordinate. The optimal time is determined by solving a fourth-order algebraic equation whose 
coefficients depend on the initial data. It may be found numerically or by using Cardano's formula (see 
Section 3). 

Along with the optimal mode, one can use extremely simple "near-optimal" control methods which 
are nearly globally optimal if the phase point is comparatively near the switching curve or surface (see 
Section 3). 

It is possible to extend the above approach to the construction of controls in the open-loop or feedback 
form in the more general case of final conditions and asymmetrical constraints: u -  ~< u ~< u +, where 
u -  < 0, u ÷ > 0. The problem is described by an equation of the form 

Yc'=a+u',  a = ( u - + u + ) ( u + - u - ) - I ,  l a l< l  

where a is a constant action, the control u' satisfies the inequality l u'  ] ~< 1 and the final conditions are 

x ( t f )  = y( t f ) ,  k ( t f )  = ~(t f) ,  ~i(t!) = y(ty)  

where y(t)  is a known function (for example, a second-order polynomial in t) describing uniformly 
accelerated motion of the terminal point. Time-optimal and near-time-optimal solutions are 
constructed by analogy with the procedure described above, on the basis of the maximum principle, 
and they are qualitatively of the same form. Investigation of the behaviour of the switching curve and 
switching surface, as well as the other characteristics of the control process, as functions of the parameter 
a and the phase vector Q, would need separate consideration. 

For applications and the theory of optimal control, it is of great importance to take into account 
constantly acting perturbations, since the models considered above are highly idealized. For example, 
the perturbed system might have the form 

~ '=e f (x ,  Jc,5~)+u, IEI,~i, ( x , k , 2 ) ~ D ~ R  (5.1) 

where f is a fairly smooth function in D. In order to determine the switching curve and the switching 
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surface of a bang-bang control u, approximate by the powers of the small parameter e, one would need 
to develop a suitable procedure of the perturbation method, analogous to that described in [8]. A further 
natural generalization of system (5.1) would be to allow the func t ion f to  depend on a quasi-constant 
vector z : :? = r.Z, where z is the vector of the system parameters. The functions f and Z may depend 
on x, ~, ~, and also on u and t. 

It is of some interest to extend the technique to systems described by an nth-order equation of the 
form 

f i  - ~ + L j  x = u ,  ImLj=O,  j = l  ..... n ~ 4  (5.2) 
j=l 

which may also include constantly acting perturbations as in (5.1) and below. In particular, if system 
(5.2) corresponds to the situation ~.j = 0, that is, x (n) = u, then the singular manifolds (curves, surfaces 
or hypersurfaces up to dimension n - 1) may be constructed successively as in Sections 1 and 2. 
Determination of the time characteristics for an open-loop control requires much larger computational 
resources. The construction of near-optimal modes ("coordinatewise descent") may be implemented 
by analogy with the; various methods described in Section 3. The simplest mode would be successive 
reduction of the derivatives to zero, beginning with the (n - 1)th: x (n-t) . . . . .  it, x. In particular, if 
u -  = u ÷, the controls corresponding to these steps are constructed using Walsh functions [7]. One may 
also have combined modes, with time-optimal reduction to zero of the quantities x (n-l), x ~n-2) at the 
first stage, as described previously [1], or  o f x  (n-l),  x (n-2), x (n-3) (see above), and so on. 
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